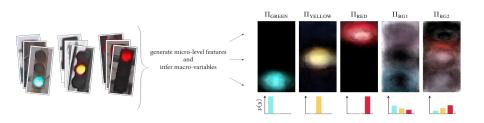


A Density-based Clustering Algorithm for Causal Feature Learning



<u>Pascal Weber</u>, Lukas Miklautz, Akshey Kumar, Moritz Grosse-Wentrup, Claudia Plant



## **Overview**

- New density-based Clustering Algorithm for Causal Feature Learning
  - Standalone algorithm
  - Faster
  - Robust to noise
  - Automatic learns a reasonable number of clusters
- Two related research areas: Clustering and Causality
- Synthetic and real world experiments



# **Background - Causal Feature Learning**

- Infer macro-level variables from micro-level data and their effects
- E.g., which aggregation of pixels are responsible for recognizing the state of a traffic light

Group x and x' together iff.

$$P(Y \mid do(X = x)) = P(Y \mid do(X = x'))$$

where do is the operator for applying interventions.





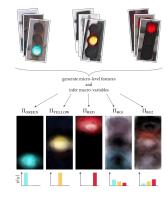
# **Background - Causal Feature Learning**

- Often it is not feasable to intervene on data ethical considerations — e.g. medicine physical constraints — e.g. weather
- Instead find observable macro-variables

Group x and x' together iff.

$$P(Y \mid X = x) = P(Y \mid X = x')$$

where x, x' is the observed data.





# **Causal Coarsening Theorem**

#### **Theorem**

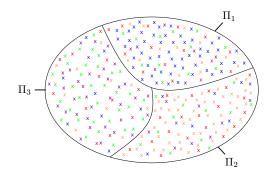
Among all the generative distributions which induce a given observational partition  $\Pi^{(o)}$ , all except for a subset of Lebesgue measure zero induce a causal partition  $\Pi^{(c)}$  that is a coarsening of  $\Pi^{(o)}$ .

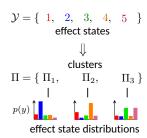
by K. Chaloupka, et. al. in 2015

- ⇒ We can still merge observational partitions to single causal partitions without loosing causal information with human knowledge or further experiments / observations
- Interventions / Experiments on every observational class instead of on every micro level data combination



# **Example**







# State-of-the-art algorithm

#### 2-step algorithm [1]:

- 1. Learn the conditional probabilities with a classifier first, e.g. MLP
- 2. Cluster the learned probabilities, e.g. k-Means

#### Drawbacks:

- Classifier and clustering algorithm rely on different assumptions
- Computationally expensive
- · Can't handle noise and outliers very well

[1] "Visual causal feature learning" by K. Chalupka, P. Perona, and F. Eberhardt (2015)

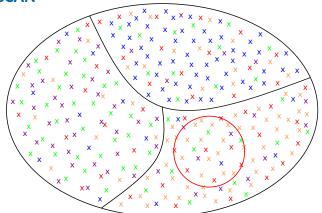


- Density-based clustering algorithm
- Idea: Extend an initial probability region until the probability distribution of neighboring regions changes
- Parameters:  $\epsilon$  (radius),  $\mu$  (min\_points), and  $\tau$  (probability distance)
- Returns cluster with their estimated probability distributions

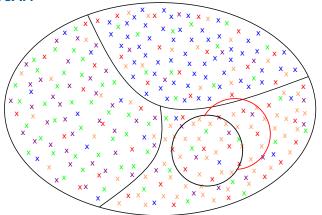
#### Implementation:

```
https://gitlab.cs.univie.ac.at/pascalw777/cafe-dbscan
```

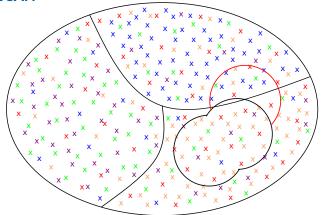








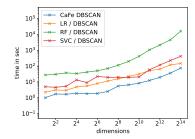






# **Experiments**

- Runtime experiments
- Hyperparamter sensitivity experiments
- Experiments on synthetic data
- Real world experiments



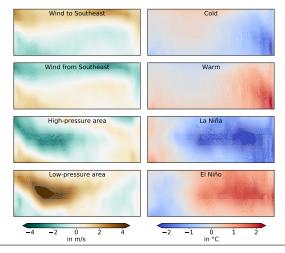


# **Experiments on synthetic data**

| Method                   | DS1: Separated Circles $(n=3,496,d=2)$ |        |      |      | DS2: Adjacent Circles $(n=4,416,d=2)$ |        |      |      | DS3: Rectangles / Circles $(n=9,343,d=2)$ |        |      |      |
|--------------------------|----------------------------------------|--------|------|------|---------------------------------------|--------|------|------|-------------------------------------------|--------|------|------|
|                          | Clf. acc.                              | k      | NMI  | ARI  | Clf. acc.                             | k      | NMI  | ARI  | Clf. acc.                                 | k      | NMI  | ARI  |
| Ground Truth             | 1.00                                   | 6(+1)  | 1.00 | 1.00 | 1.00                                  | 7(+1)  | 1.00 | 1.00 | 1.00                                      | 7(+1)  | 1.00 | 1.00 |
| CaFe DBSCAN              | -                                      | 6(+1)  | 0.97 | 0.97 | -                                     | 7(+1)  | 0.94 | 0.94 | -                                         | 7(+1)  | 0.86 | 0.85 |
| CaFe DBSCAN <sup>+</sup> | -                                      | 6(+1)  | 0.98 | 0.99 | -                                     | 7(+1)  | 0.95 | 0.95 | -                                         | 7(+1)  | 0.91 | 0.91 |
| LR / k-Means             | 0.33                                   | 6*     | 0.66 | 0.45 | 0.50                                  | 7*     | 0.79 | 0.74 | 0.30                                      | 7*     | 0.40 | 0.18 |
| RF  /  k-Means           | 0.33                                   | 6*     | 0.66 | 0.46 | 0.50                                  | 7*     | 0.68 | 0.54 | 0.32                                      | 7*     | 0.78 | 0.70 |
| SVC / k-Means            | 0.33                                   | 6*     | 0.31 | 0.13 | 0.50                                  | 7*     | 0.59 | 0.40 | 0.27                                      | 7*     | 0.38 | 0.15 |
| MLP / $k$ -Means         | 0.33                                   | 6*     | 0.65 | 0.41 | 0.52                                  | 7*     | 0.76 | 0.65 | 0.34                                      | 7*     | 0.79 | 0.67 |
| LR / DBSCAN              | 0.33                                   | 6(+1)  | 0.98 | 0.98 | 0.50                                  | 5(+1)  | 0.86 | 0.70 | 0.30                                      | 10(+1) | 0.60 | 0.37 |
| RF / DBSCAN              | 0.33                                   | 6(+1)  | 0.74 | 0.60 | 0.50                                  | 45(+1) | 0.69 | 0.50 | 0.32                                      | 10(+1) | 0.77 | 0.70 |
| SVC / DBSCAN             | 0.33                                   | 5(+1)  | 0.51 | 0.28 | 0.50                                  | 4(+1)  | 0.64 | 0.42 | 0.27                                      | 5(+1)  | 0.59 | 0.33 |
| MLP / DBSCAN             | 0.33                                   | 9(+1)  | 0.86 | 0.77 | 0.52                                  | 13(+1) | 0.87 | 0.83 | 0.34                                      | 20(+1) | 0.77 | 0.66 |
| LR / HDBSCAN             | 0.33                                   | 6(+1)  | 0.90 | 0.83 | 0.50                                  | 5(+1)  | 0.87 | 0.71 | 0.30                                      | 27(+1) | 0.52 | 0.25 |
| RF / HDBSCAN             | 0.33                                   | 6(+1)  | 0.72 | 0.59 | 0.50                                  | 17(+1) | 0.65 | 0.36 | 0.32                                      | 21(+1) | 0.60 | 0.32 |
| SVC / HDBSCAN            | 0.33                                   | 20(+1) | 0.69 | 0.46 | 0.50                                  | 9(+1)  | 0.84 | 0.69 | 0.27                                      | 9(+1)  | 0.51 | 0.23 |
| MLP / HDBSCAN            | 0.33                                   | 5(+1)  | 0.88 | 0.81 | 0.52                                  | 12(+1) | 0.87 | 0.87 | 0.34                                      | 13(+1) | 0.78 | 0.70 |

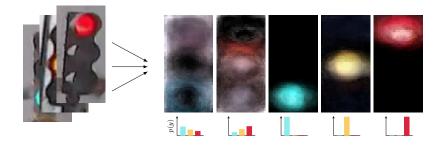


# Real world example — El Niño



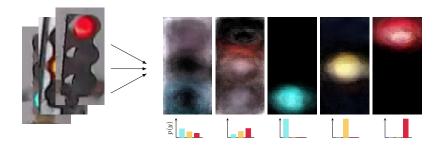


# **Real world example — Traffic Lights**





# Real world example — Traffic Lights

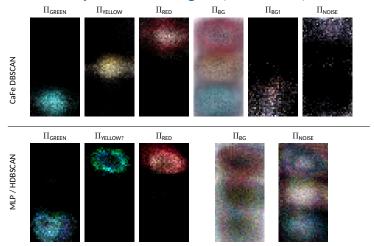


observational class: 
$$P(Y \mid X = x) = P(Y \mid X = x')$$
. (2)

causal class: 
$$P(Y \mid do(X = x)) = P(Y \mid do(X = x'))$$
. (1)



# Real world example — Traffic Lights (with noise)





# **Summary**

- Introduced the idea of density-based clustering of conditional probabilities
- We showed in various experiments that our algorithm outperforms the previous state-of-the-art approach for CFL in
  - clustering quality
  - speed
  - robustness to noise

#### Further work:

- Adapt algorithm to other variants of density based clustering algorithms, e.g. HDBSCAN
- Usage in interpretable machine learning



# Thank you for your attention!

Questions?