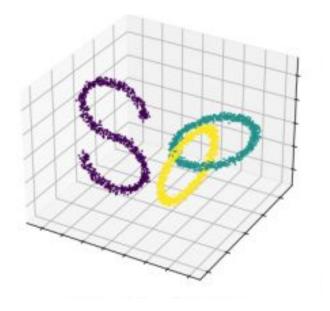


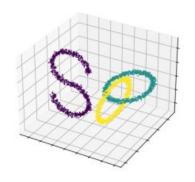
SHADE: Deep Density-based Clustering


December 11th, 2024

Anna Beer*, Pascal Weber*, Lukas Miklautz, Collin Leiber, Walid Durani, Christian Böhm, Claudia Plant

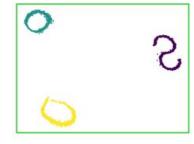
ICDM 2024, 9-12 December 2024, Abu Dhabi, UAE

Motivation


- Density-based Clustering is one of the main concepts of clustering
- Clusters of arbitrary shape are common in real world data
- Data can contain noise points

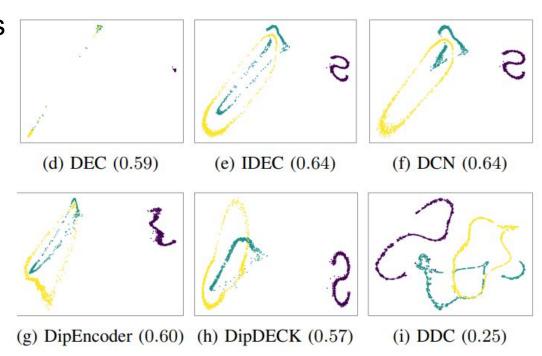

Traditional methods are not optimal for high-dimensional data

Motivation

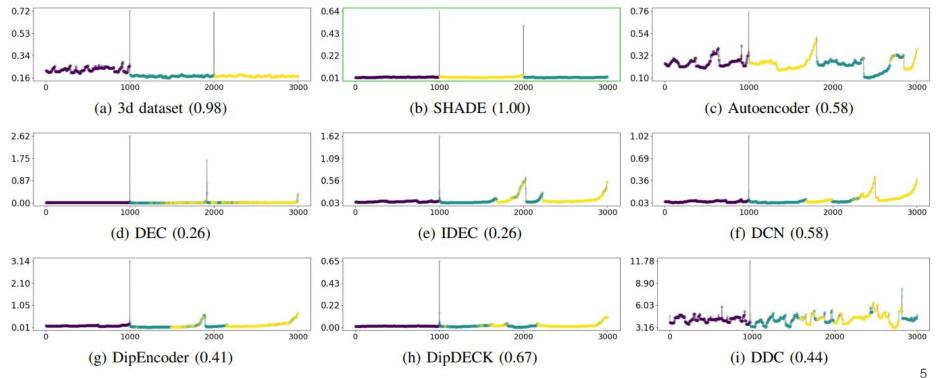

 Autoencoders (AE) optimizing the reconstruction loss are not optimal for intertwined or non-contractible clusters

3d data

2d embedding by an AE

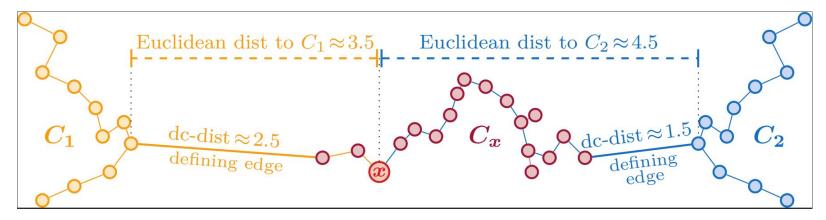

Desired embedding for clustering (SHADE)

Deep Clustering

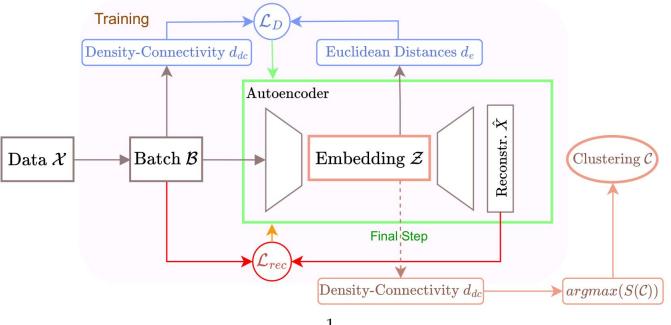

 Deep Clustering methods usually combine an AE with some cluster loss

$$\mathcal{L} = \mathcal{L}_{rec} + \mathcal{L}_{cluster}$$

It can be relevant to
 preserve the shape in
 the embedding


OPTICS Plots

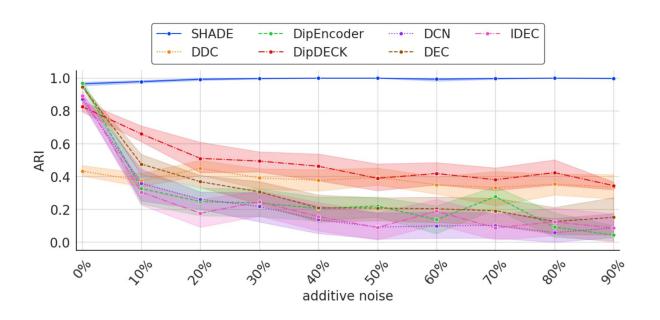
December 11th, 2024 – SHADE: Deep Density-based Clustering – Talk at ICDM 2024 by Anna Beer* and Pascal Weber*


Capturing Density

- ullet Capture the density-connectivity with **dc-distance** d_{dc}
- Similar to minimax path distance, enriched with concept of density by using core distances
- Density-connectivity loss \mathcal{L}_d : Similarity between Euclidean distance in low-dimensional embedding and dc-distance in high-dimensional space

Overview of SHADE

$$\mathcal{L}_d = \frac{1}{|\mathcal{B}|^2} \sum_{x_i, x_j \in \mathcal{B}} \left(d_{dc}(x_i, x_j) - d_{eucl}(z_i, z_j) \right)^2$$



$$\mathcal{L}_{rec} = \frac{1}{|\mathcal{B}|} \sum_{x_i \in \mathcal{B}} \|x_i - \hat{x}_i\|_2^2$$

Results

02	Dataset	SHADE	SHADE_1nn	DDC	DipDECK	DipEncoder	DCN	DEC	IDEC
Tabular data	Synth_low Synth_high	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	98.9 ± 2.0 97.5 ± 1.4	$\frac{56.9 \pm 5.5}{33.9 \pm 11.1}$	33.9 ± 6.4 29.9 ± 13.6	10.1 ± 9.9 9.3 ± 10.7	9.6 ± 9.7 8.8 ± 10.5	40.2 ± 3.0 30.3 ± 3.5	15.3 ± 8.8 17.9 ± 6.6
	letterrec. htru2 Mice Pendigits	$\begin{array}{c} 43.2 \pm 1.7 \\ 72.8 \pm 23.4 \\ 32.5 \pm 3.8 \\ 85.1 \pm 1.4 \end{array}$	23.0 ± 0.9 65.0 ± 19.5 27.7 ± 2.9 75.1 ± 0.8	9.9 ± 2.9 49.4 ± 13.0 25.2 ± 1.9 76.9 ± 2.0	7.3 ± 3.5 9.7 ± 19.4 22.7 ± 4.3 74.3 ± 1.1	24.7 ± 1.3 4.3 ± 0.8 21.6 ± 2.6 64.6 ± 3.0	22.6 ± 1.0 49.7 ± 2.8 21.7 ± 1.4 61.6 ± 1.9	23.9 ± 1.6 3.0 ± 0.5 22.0 ± 1.5 65.7 ± 3.3	25.2 ± 1.8 3.2 ± 0.6 21.8 ± 1.4 64.9 ± 2.6
Video	Weizmann Keck	$\begin{vmatrix} 57.1 \pm 5.9 \\ 9.3 \pm 0.5 \end{vmatrix}$	$48.2 \pm 3.6 \\ 7.5 \pm 0.4$	14.7 ± 1.8 -0.2 ± 1.1	12.0 ± 1.9 6.9 ± 0.8	23.3 ± 1.2 7.1 ± 0.3	24.6 ± 1.1 6.4 ± 0.5	$\frac{24.9 \pm 1.2}{6.1 \pm 0.9}$	24.7 ± 1.2 6.2 ± 0.9
Image	COIL20 COIL100 cmu_faces	$ 82.5 \pm 4.5 78.1 \pm 7.3 38.9 \pm 7.6 $	68.7 ± 3.5 56.8 ± 5.0 34.6 ± 6.2	62.0 ± 5.5 16.4 ± 3.8 35.0 ± 3.5	50.5 ± 7.8 21.4 ± 3.0 29.8 ± 9.8	$\frac{64.0 \pm 3.0}{54.3 \pm 1.9}$ 37.9 ± 2.2	62.4 ± 2.8 55.9 ± 3.0 $\mathbf{40.3 \pm 2.0}$	63.7 ± 2.8 55.8 ± 2.0 35.8 ± 2.8	62.9 ± 2.9 $\mathbf{56.9 \pm 2.0}$ 39.4 ± 3.3

Robust against Noise

Hyperparameters - Ablation Studies

- μ / min_points: Similar results for the tested values μ∈ [3, 7]
 - Default value: μ = 5
- ullet batchsize: 300 is large enough to estimate the dc-distance d_{dc} good enough
 - Default value: batchsize = 500

No other Parameters!

Summary

- SHADE is the first deep density-based clustering method
- It preserves density-connected structures in low-dimensional embeddings
- SHADE finds noise, arbitrarily shaped clusters, and detects the number of clusters fully automatically

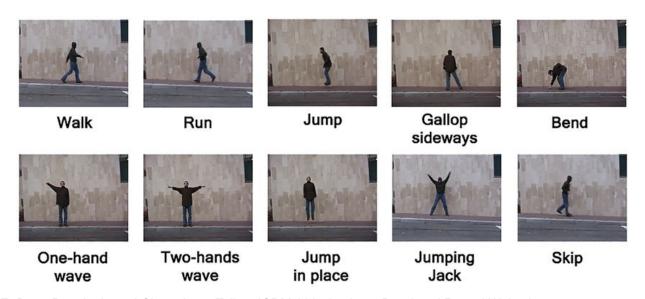
ArXiv: https://arxiv.org/abs/2410.06265

Code: https://github.com/pasiweber/SHADE

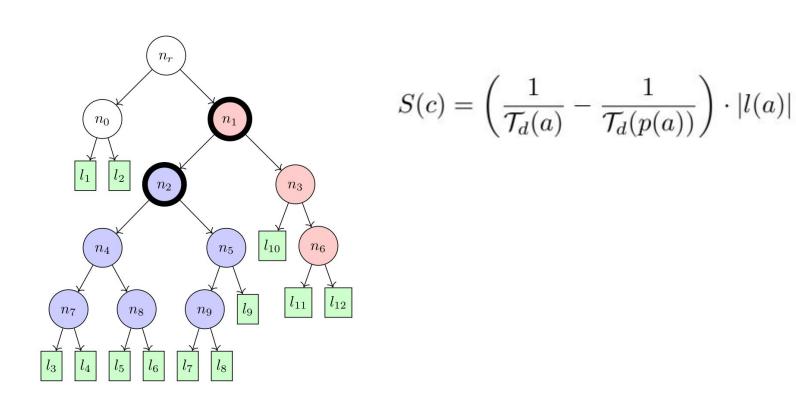
Density-based vocabulary

• Core Distance (where x_{μ} is the μ -th nearest neighbor of a point x)

$$d_{core}(x) = d_{eucl}(x, x_{\mu})$$


Mutual Reachability Distance

$$d_m(x,y) = \max(d_{eucl}(x,y), core_dist(x), core_dist(y))$$


- ullet dc-distance d_{dc}
 - Create minimum spanning tree on mutual reachability distance
 - Get minimax path distance from that tree longest edge on the path between x and y is the dc-distance between those points

Video data often has density-based clusters in HD space

- Each scene of a movie is a density-connected cluster
 - every image/frame is similar to the next one, but beginning and end of a scene might be very different

Extract clustering from the tree metric

	Dataset	n	d	k	#noise	Source
	Synth_low	5000	100	10	500	[18]
62	Synth_high	5000	100	10	500	[18]
dat	HAR	10,299	561	6	0	[26]
lar	letterrecognition	20,000	16	26	0	[26]
Tabular data	htru2	17,898	8	2	0	[26]
T	Mice	1,077	68	8	0	[26]
	TCGA	801	20,264	5	0	[26]
	Pendigits	10,992	16	10	0	[26]
60	Weizmann	5,701	77,760	90	0	[4]
Video	Keck	25,457	120,000	60	0	[43]
	COIL20	1,440	16,384	34 20 0	0	[26]
	COIL100	7,200	49,152	100	0	[26]
-	cmu_faces	624	960	20	0	[26]
Image data	Optdigits	5,620	64	10	0	[26]
oge o	USPS	9,298	256	10	0	[16]
nag	MNIST	70,000	784	10	0	[21]
П	FMNIST	70,000	784	10	0	[40]
	KMNIST	70,000	784	10	0	[8]

_		Dataset	Metric	SHADE	SHADE_1nn	DDC	DipDECK	DipEncoder	DCN	DEC	IDEC
:-		$\begin{array}{l} \text{Synth_low} \\ (noise: 1.1 \pm 1.3) \\ k = 10 \end{array}$	ARI NMI k	99.4 ± 1.8 99.7 ± 1.0 10.0 ± 0.0	98.9 ± 2.0 99.2 ± 1.2 10.0 ± 0.0	$\begin{array}{c} 56.9 \pm 5.5 \\ \hline 82.9 \pm 3.2 \\ \hline 16.8 \pm 1.0 \end{array}$	33.9 ± 6.4 58.0 ± 5.0 4.1 ± 0.5	10.1 ± 9.9 31.3 ± 13.6	9.6 ± 9.7 29.4 ± 13.4	40.2 ± 3.0 69.4 ± 3.0	15.3 ± 8.8 44.3 ± 9.5
	700 701	$\begin{array}{l} \text{Synth_high} \\ \textit{(noise: } 2.4 \pm 1.2) \\ k = 10 \end{array}$	ARI NMI k	98.4 ± 1.2 98.1 ± 1.2 13.0 ± 1.5	97.5 ± 1.4 97.3 ± 1.3 13.0 ± 1.5	$\begin{array}{c} 33.9 \pm 11.1 \\ \hline 61.8 \pm 6.1 \\ \hline 10.3 \pm 2.1 \end{array}$	29.9 ± 13.6 53.2 ± 12.0 4.7 ± 1.3	9.3 ± 10.7 28.9 ± 13.4	8.8 ± 10.5 26.9 ± 13.2	30.3 ± 3.5 61.4 ± 4.8	17.9 ± 6.6 46.7 ± 5.0
		HAR (noise: 3.2 ± 5.2) $k = 6$	ARI NMI k	36.0 ± 5.6 58.5 ± 5.8 3.3 ± 2.0	$ \begin{vmatrix} 36.4 \pm 6.4 \\ 58.2 \pm 5.5 \\ 3.3 \pm 2.0 \end{vmatrix} $	49.4 ± 3.3 68.2 ± 2.1 4.2 ± 1.0	51.3 ± 4.0 71.3 ± 2.0 3.1 ± 0.3	60.0 ± 6.9 73.6 ± 4.1	66.1 ± 1.3 75.4 ± 1.2	63.4 ± 2.4 75.0 ± 1.8	$\frac{64.9 \pm 0.9}{74.6 \pm 0.7}$
	Tabular data	letterrec. (noise: 50.3 ± 1.8) $k = 26$	ARI NMI k	43.2 ± 1.7 75.6 ± 1.0 111.4 ± 4.9	23.0 ± 0.9 57.4 ± 0.5 111.4 ± 4.9	9.9 ± 2.9 43.5 ± 2.5 14.0 ± 1.0	7.3 ± 3.5 34.4 ± 3.8 13.0 ± 2.4	$\frac{24.7 \pm 1.3}{49.7 \pm 0.9}$	22.6 ± 1.0 46.4 ± 1.0	23.9 ± 1.6 50.8 ± 1.0	25.2 ± 1.8 49.7 ± 1.2
	Ta.	htru2 (noise: 14.0 ± 3.8) $k = 2$	ARI NMI k	$72.8 \pm 23.4 59.9 \pm 19.6 5.9 \pm 2.1$	65.0 ± 19.5 47.4 ± 14.4 5.9 ± 2.1	49.4 ± 13.0 42.1 ± 7.0 3.7 ± 0.6	9.7 ± 19.4 5.5 ± 11.0 1.2 ± 0.4	4.3 ± 0.8 10.5 ± 1.4	$\frac{49.7 \pm 2.8}{31.6 \pm 7.0}$	3.0 ± 0.5 10.8 ± 0.6	3.2 ± 0.6 10.7 ± 0.6
	85	Mice (noise: 30.0 ± 5.5) $k = 8$	ARI NMI k	32.5 ± 3.8 56.2 ± 4.6 11.9 ± 2.8	$ \begin{array}{c} 27.7 \pm 2.9 \\ \hline 48.7 \pm 2.3 \\ \hline 11.9 \pm 2.8 \end{array} $	25.2 ± 1.9 49.6 ± 2.0 15.3 ± 1.2	22.7 ± 4.3 48.0 ± 5.3 13.4 ± 5.3	21.6 ± 2.6 38.7 ± 2.6	21.7 ± 1.4 38.3 ± 1.5	22.0 ± 1.5 39.4 ± 1.8	21.8 ± 1.4 38.3 ± 1.8
		TCGA (noise: 21.8 ± 9.0) $k = 5$	ARI NMI k	86.6 ± 7.8 90.8 ± 4.4 5.7 ± 0.9	$ 80.0 \pm 13.7 87.4 \pm 7.2 5.7 \pm 0.9 $	87.5 ± 0.8 91.9 ± 0.7 6.0 ± 0.0	$\frac{88.8 \pm 4.4}{91.9 \pm 2.1}$ 5.9 ± 0.5	93.4 ± 6.0 94.0 ± 3.8	87.2 ± 5.3 89.1 ± 3.1	85.1 ± 2.7 89.5 ± 1.2	82.6 ± 0.9 86.1 ± 1.4
_	133	Pendigits (noise: 17.5 ± 2.2) $k = 10$	ARI NMI k	$\begin{array}{c} 85.1 \pm 1.4 \\ 89.3 \pm 0.9 \\ 20.0 \pm 1.8 \end{array}$	$ \begin{array}{r} 75.1 \pm 0.8 \\ 82.7 \pm 0.6 \\ 20.0 \pm 1.8 \end{array} $	76.9 ± 2.0 84.1 ± 1.0 13.0 ± 0.4	74.3 ± 1.1 82.0 ± 0.8 14.8 ± 0.7	64.6 ± 3.0 75.2 ± 1.3	61.6 ± 1.9 72.7 ± 0.6	65.7 ± 3.3 76.7 ± 1.4	64.9 ± 2.6 75.9 ± 0.9
_	Video data	Weizmann (noise: 14.6 ± 2.6) $k = 90$	ARI NMI k	57.1 ± 5.9 86.6 ± 0.6 57.1 ± 2.1	48.2 ± 3.6 80.2 ± 1.1 57.1 ± 2.1	14.7 ± 1.8 57.5 ± 2.0 20.8 ± 2.4	12.0 ± 1.9 52.8 ± 1.9 24.5 ± 2.2	23.3 ± 1.2 61.9 ± 0.8 $88.4 \pm 1.2^*$	24.6 ± 1.1 62.3 ± 0.9	$\frac{24.9 \pm 1.2}{63.7 \pm 1.0}$	24.7 ± 1.2 63.3 ± 1.0
_	Vide	Keck (noise: 25.4 ± 1.1) $k = 60$	ARI NMI k	$\begin{array}{c} 9.3 \pm 0.5 \\ 66.3 \pm 0.3 \\ 226.6 \pm 10.4 \end{array}$	7.5 ± 0.4 61.6 ± 0.3 226.6 ± 10.4	-0.2 ± 1.1 18.1 ± 4.3 10.6 ± 3.1	6.9 ± 0.8 34.9 ± 6.0 32.3 ± 7.4	7.1 ± 0.3 42.4 ± 0.6	6.4 ± 0.5 39.4 ± 2.5	6.1 ± 0.9 39.9 ± 3.5	6.2 ± 0.9 39.2 ± 5.2
-	data	COIL20 (noise: 12.5 ± 1.9) $k = 20$	ARI NMI k	82.5 ± 4.5 93.6 ± 1.7 16.5 ± 1.0	68.7 ± 3.5 85.6 ± 1.3 16.5 ± 1.0	62.0 ± 5.5 85.5 ± 0.9 14.3 ± 0.8	50.5 ± 7.8 79.9 ± 2.4 18.9 ± 1.0	$64.0 \pm 3.0 \\ 80.2 \pm 1.1$	62.4 ± 2.8 79.6 ± 1.3	63.7 ± 2.8 80.6 ± 1.0	62.9 ± 2.9 80.0 ± 1.1
	Image da	COIL100 (noise: 24.9 ± 1.7) k = 100	ARI NMI k	$78.1 \pm 7.3 \\ 94.4 \pm 0.9 \\ 77.8 \pm 3.2$	$ \begin{array}{r} \underline{56.8 \pm 5.0} \\ \underline{85.4 \pm 0.6} \\ \overline{77.8 \pm 3.2} \end{array} $	16.4 ± 3.8 69.5 ± 3.0 18.3 ± 3.3	21.4 ± 3.0 69.5 ± 1.7 26.8 ± 1.9	54.3 ± 1.9 82.6 ± 0.6 99.8 ± 0.4	55.9 ± 3.0 84.2 ± 0.7	55.8 ± 2.0 85.8 ± 0.5	56.9 ± 2.0 84.7 ± 0.5
Danasah an 44th - 000 =		cmu_faces (noise: 15.1 ± 4.1) $k = 20$	ARI NMI k	38.9 ± 7.6 69.1 ± 5.3 10.6 ± 1.7	$ \begin{array}{c c} 34.6 \pm 6.2 \\ 65.0 \pm 4.9 \\ 10.6 \pm 1.7 \end{array} $	35.0 ± 3.5 64.4 ± 2.3 12.0 ± 0.9	29.8 ± 9.8 62.3 ± 7.6 8.9 ± 2.2	37.9 ± 2.2 67.7 ± 1.6	$40.3 \pm 2.0 \\ 68.5 \pm 1.0$	35.8 ± 2.8 66.1 ± 2.0	$\frac{39.4 \pm 3.3}{68.2 \pm 2.2}$
December 11th, 202 =											

Dataset	Metric	SHADE	SHADE_1nn	DDC	DipDECK	DipEncoder	DCN	DEC	IDEC
Optdigits	ARI	93.3 ± 1.9	78.0 ± 7.4	88.9 ± 2.3	82.2 ± 2.3	80.2 ± 4.0	77.0 ± 3.5	80.4 ± 3.1	80.7 ± 3.6
(noise: 38.2 ± 5.3)	NMI	94.6 ± 1.0	83.4 ± 3.9	91.7 ± 1.3	86.2 ± 0.9	85.6 ± 2.0	82.9 ± 1.6	86.3 ± 1.4	86.2 ± 1.5
k = 10	k	12.4 ± 1.0	12.4 ± 1.0	11.1 ± 0.5	11.0 ± 1.2	1-8	-	1.53	-
USPS	ARI	88.1 ± 2.7	68.1 ± 1.5	92.2 ± 2.2	68.2 ± 5.1	72.5 ± 2.0	66.2 ± 1.3	73.4 ± 0.9	74.0 ± 0.9
(noise: 45.7 ± 2.8)	NMI	91.8 ± 1.1	75.9 ± 1.1	91.0 ± 0.8	78.5 ± 2.5	79.9 ± 1.6	74.5 ± 1.0	81.0 ± 0.5	81.3 ± 0.6
k = 10	k	9.5 ± 0.9	9.5 ± 0.9	9.8 ± 0.4	8.0 ± 1.2	-	-	-	-
MNIST	ARI	86.1 ± 8.4	54.1 ± 2.8	94.5 ± 1.2	80.9 ± 3.0	79.6 ± 2.8	82.0 ± 4.5	79.5 ± 2.1	81.9 ± 2.0
(noise: 58.9 ± 5.3)	NMI	84.5 ± 2.4	63.7 ± 1.3	93.7 ± 0.8	84.5 ± 1.5	84.9 ± 1.6	84.6 ± 1.9	85.1 ± 1.0	87.5 ± 0.8
k = 10	k	38.0 ± 9.9	38.0 ± 9.9	10.0 ± 0.0	11.3 ± 0.8	-	-	-	-
FMNIST	ARI	72.2 ± 2.7	35.7 ± 1.4	35.5 ± 7.1	46.5 ± 0.9	43.5 ± 3.6	45.8 ± 2.9	42.3 ± 4.1	46.9 ± 3.6
(noise: 66.3 ± 2.3)	NMI	73.4 ± 1.0	53.9 ± 0.9	64.1 ± 3.3	65.3 ± 0.7	59.4 ± 2.4	62.4 ± 2.2	59.3 ± 2.7	63.7 ± 2.5
k = 10	k	68.7 ± 9.2	68.7 ± 9.2	7.1 ± 0.9	9.6 ± 1.1	150	-	-	10.54
KMNIST	ARI	58.6 ± 9.4	27.5 ± 1.7	60.3 ± 3.5	33.8 ± 9.9	43.6 ± 1.1	40.3 ± 1.6	42.4 ± 0.9	42.8 ± 1.1
(noise: 73.4 ± 2.2)	NMI	66.2 ± 3.1	46.8 ± 0.6	73.6 ± 1.6	55.9 ± 5.0	56.7 ± 1.3	53.6 ± 1.4	55.7 ± 1.1	56.7 ± 1.2
k = 10	k	64.1 ± 10.4	64.1 ± 10.4	16.2 ± 0.7	11.7 ± 2.8	-	-	-	-