Ultrametric Cluster Hierarchies: I Want 'em All!

Similarity All ultrametrics are hierarchical An ultrametric is a metric which also satisfies the strong triangle inequality: $d(x, z) \le max \{d(x, y), d(y, z)\}$ Every ultrametric can be Every hierarchy with node represented by a hierarchy. values growing along the paths from the leaves to the root corresponds to an ultrametric. Minimax distance as ultrametric ℓ_1 ℓ_2 ℓ_3 ℓ_4 ℓ_5 ℓ_6 ℓ_7 ℓ_8 0 4 4 5 5 5 5 5 4 0 4 5 5 5 5 5 4 4 0 5 5 5 5 5 5 5 5 0 3 3 3 4 Hierarchical representation 5 5 5 3 0 2 2 4 5 5 5 3 2 0 1 4 The distance between two 5 5 5 3 2 1 0 4 nodes is the node value of 5 5 5 4 4 4 4 0 their lowest common Distance matrix of ancestor. minimax ultrametric HST-DPO k-median/GT Cover trees, KD trees, and other Hierarchically Well-

Our proposed SHiP clustering framework

Clusterings of ultrametrics corresponding to Cover tree,

KD tree, and another Hierarchically Well-Separated tree

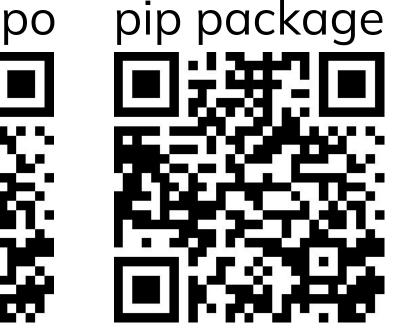
- (1) fits an ultrametric (similarity)
- (2) computes a centroid-based hierarchy
- (3) extracts a partitioning
- ✓ C++ Code on Github
- ✓ pip package of the Python interface

Separated trees can all

focus on different

characteristics.

represent data, but they all

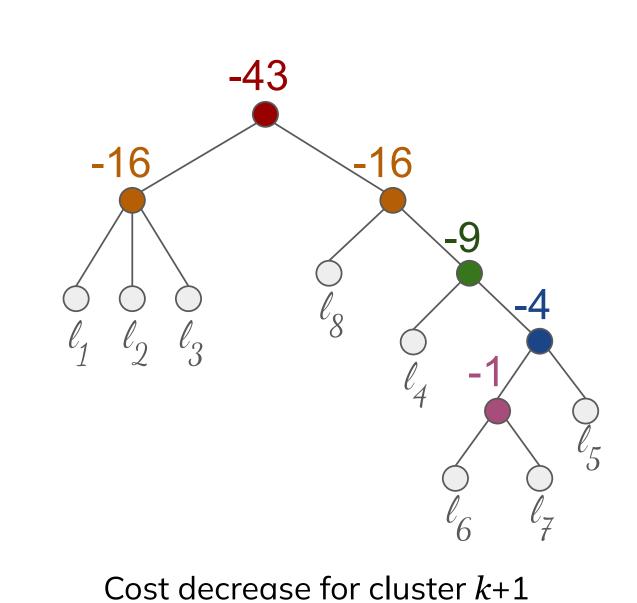


Hierarchy

Centroid-based clustering in ultrametrics

It takes **Sort(n) time** to find the optimal k-z (median, mean, etc.) solutions for all values of k in an ultrametric.

The **optimal solutions** are themselves hierarchical.



Clusterings	Total costs							
$k = 1$: $\ell_1 - \ell_2 - \ell_3 - \ell_8 - \ell_4 - \ell_6 - \ell_7 - \ell_5$	$105 = (3x5^2 + 4^2 + 3^2 + 2^2 + 1^2)$							
	$62 = (2\times4^2) + (4^2 + 3^2 + 2^2 + 1^2)$							
$k = 3$: $\ell_1 \mid \ell_2 - \ell_3 \mid \ell_8 - \ell_4 - \ell_6 - \ell_7 - \ell_5$	46 = (42) + (42 + 32 + 22 + 12)							
$k = 4$: $\ell_1 \mid \ell_2 \mid \ell_3 \mid \ell_8 - \ell_4 - \ell_6 - \ell_7 - \ell_5$								
$k = 5$: $\ell_1 \mid \ell_2 \mid \ell_3 \mid \ell_8 \mid \ell_4 - \ell_6 - \ell_7 - \ell_5$								
$k = 6$: $\ell_1 \mid \ell_2 \mid \ell_3 \mid \ell_8 \mid \ell_4 \mid \ell_6 - \ell_7 - \ell_5$	$5 = (2^2 + 1^2)$							
$k = 7$: $\ell_1 \mid \ell_2 \mid \ell_3 \mid \ell_8 \mid \ell_4 \mid \ell_6 - \ell_7 \mid \ell_5$	1 = (12)							
$k = 8$: $\ell_1 \mid \ell_2 \mid \ell_3 \mid \ell_8 \mid \ell_4 \mid \ell_6 \mid \ell_7 \mid \ell_5$	0							
Cluster centers in bold The sum of \emph{k} -means costs								

Partitioning

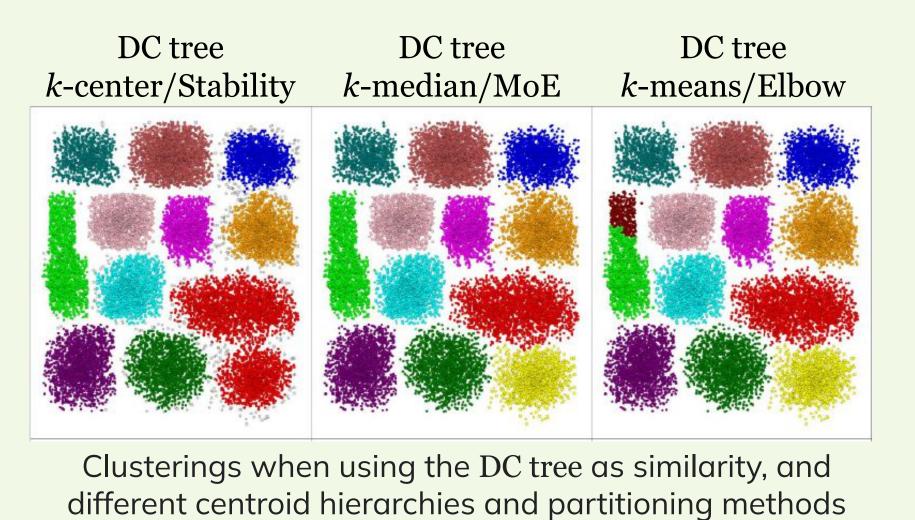
Extract a clustering from a hierarchy

Partitioning a hierarchy can be achieved extremely fast (O(n) time). Possible strategies are:

- a. Threshold the values in the tree (DBSCAN)
- b. Pick the "best" clustering by a function (HDBSCAN)
- c. Optimal clustering for a user-specified value of k
- d. Elbow method

DC tree captures density connectivity.

- → Centroid hierarchies can split density-connected clusters
- → Some partitioning methods find noise or determine the number of clusters automatically



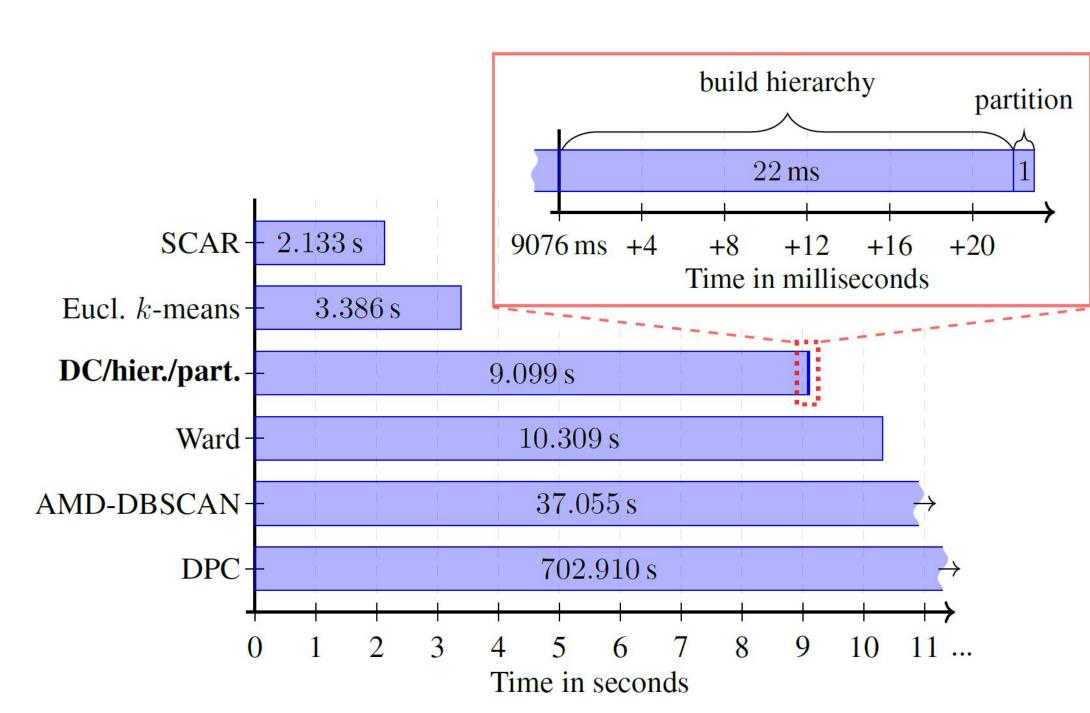
High efficiency through single ultrametric preprocessing

AARHUS JÜLICH UNIVERSITY JÜLICH Forschungszentrum wien wien

Rasmus Jørgensen¹, Anna Beer³, Claudia Plant^{3,5}, Ira Assent^{1,2}

Our framework requires only a single upfront ultrametric computation, after that we can generate **multiple** different clusterings with **negligible** additional runtime.

Faster methods compute the clustering for only one single parameter setting.



Andrew Draganov* 1,2, Pascal Weber* 3,4,5,

Clustering runtimes for different algorithms of the letterrec. dataset. Our method finds clusterings for **all** possible k.

Clustering Quality Flexibility enables deeper insights

There is no combination of hierarchy and partitioning that generally works "best". Although DC tree/k-means/Elbow performs good in many cases, it is not universally superior to the other combinations; different pairings excel on different datasets. Our framework allows to rapidly switch between different hierarchies and partitioning methods.

		DC tree Cover tree			competitors							
	Dataset	k-center Stability	k-median MoE	k-means Elbow	k-center Stability	<i>k</i> -median MoE	k-means Elbow	Eucl. k -means	SCAR	Ward	AMD- DBSCAN	DPC
Tabular Data	Boxes	90.1	99.3	<u>97.9</u>	2.6	42.1 ± 4.7	24.2 ± 1.6	93.5 ± 4.3	0.1 ± 0.1	95.8	63.9	25.9
	D31	79.7	42.7	82.9	46.5 ± 1.8	62.0 ± 5.4	67.7 ± 3.2	92.0 ± 2.7	41.7 ± 5.4	92.0	<u>86.4</u>	18.5
	airway	38.0	65.9	58.8	0.8	18.2 ± 2.4	12.0 ± 1.4	39.9 ± 2.0	-0.9 ± 0.5	43.7	31.7	<u>65.1</u>
	lactate	41.0	41.0	<u>67.5</u>	0.1	4.1 ± 0.6	1.7 ± 0.2	28.6 ± 1.1	1.5 ± 1.0	27.7	71.5	0.0
	HAR	30.0	46.9	52.8	14.7 ± 8.8	14.2 ± 4.7	9.6 ± 2.2	46.0 ± 4.5	5.5 ± 3.2	<u>49.1</u>	0.0	33.2
	letterrec.	12.1	<u>16.6</u>	17.9	5.8 ± 0.2	7.2 ± 0.6	6.2 ± 0.3	12.9 ± 0.6	0.4 ± 0.1	14.7 ± 0.9	7.9	0.0
	PenDigits	66.4	<u>73.1</u>	75.4	8.0 ± 0.8	12.0 ± 0.6	8.9 ± 0.5	55.3 ± 3.2	0.9 ± 0.3	55.2	55.6	28.8 ± 1.1
Image Data	COIL20	81.2	<u>72.8</u>	72.6	46.4 ± 4.4	46.6 ± 2.1	47.7 ± 2.0	58.2 ± 2.8	33.5 ± 2.0	68.6	39.2	35.9 ± 0.1
	COIL100	80.1	66.8	<u>70.0</u>	44.6 ± 4.2	46.6 ± 1.5	50.1 ± 1.2	56.1 ± 1.4	16.7 ± 0.8	61.4	14.2	0.2
	cmu_faces	60.2	56.6	66.5	8.6 ± 3.1	37.1 ± 4.1	34.2 ± 2.1	53.2 ± 4.7	38.5 ± 2.9	<u>61.6</u>	0.7	0.6
	OptDigits	55.3	77.0	77.0	40.9 ± 3.5	20.9 ± 2.3	18.1 ± 2.4	61.3 ± 6.6	14.4 ± 4.1	74.6 ± 2.4	63.2	0.0
	USPS	33.7	29.3	29.3	12.0 ± 1.7	8.7 ± 1.0	11.2 ± 1.5	52.3 ± 1.7	2.9 ± 0.9	63.9	0.0	21.0
	MNIST	19.7	41.7	46.0	11.1 ± 1.7	5.4 ± 0.6	5.4 ± 0.6	36.9 ± 1.0	1.3 ± 0.4	52.7	0.0	-

ARI values for the SHiP framework on the DC tree and Cover tree ultrametrics and competitors. Euclidean k-means, SCAR, and Ward are given the ground-truth value k.

Anna Beer, Andrew Draganov, et al. (2023). "Connecting the dots – density-connectivity distance unifies DBSCAN, k-center and Spectral Clustering". In: SIGKDD Conference on Knowledge Discovery and Data Mining: p. 80–92.

Yuxiang Zeng, Yongxin Tong, and Lei Chen. (2021). "HST+: An efficient index for embedding arbitrary metric spaces". In: IEEE 37th International Conference on Data Engineering: p. 648–659.

¹Department of Computer Science, Aarhus University, Aarhus, Denmark; ²IAS-8: Data Science, University of Vienna, Vienn